Exercise 55

Let P and Q be polynomials. Find

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}
$$

if the degree of P is (a) less than the degree of Q and (b) greater than the degree of Q.

Solution

Recall that the degree of a polynomial is the highest power of x.

Part (a)

If P is less than the degree of Q, then the limit will be, for example,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow \infty} \frac{a+b x+c x^{2}+d x^{3}}{a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}} & =\lim _{x \rightarrow \infty} \frac{a+b x+c x^{2}+d x^{3}}{a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}} \cdot \frac{\frac{1}{x^{5}}}{\frac{1}{x^{5}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{a}{x^{5}}+\frac{b}{x^{4}}+\frac{c}{x^{3}}+\frac{d}{x^{2}}}{\frac{a}{x^{5}}+\frac{b}{x^{4}}+\frac{c}{x^{3}}+\frac{d}{x^{2}}+\frac{e}{x}+f} \\
& =\frac{0+0+0+0}{0+0+0+0+f} \\
& =\frac{0}{f} \\
& =0 .
\end{aligned}
$$

Part (b)

If P is greater than the degree of Q, then the limit will be, for example,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}=\lim _{x \rightarrow \infty} \frac{a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}}{a+b x+c x^{2}+d x^{3}} & =\lim _{x \rightarrow \infty} \frac{a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}}{a+b x+c x^{2}+d x^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{a}{x^{3}}+\frac{b}{x^{2}}+\frac{c}{x}+d+e x+f x^{2}}{\frac{a}{x^{3}}+\frac{b}{x^{2}}+\frac{c}{x}+d} \\
& =\frac{0+0+0+d+\infty+\infty}{0+0+0+d} \\
& =\frac{\infty}{d} \\
& =\infty .
\end{aligned}
$$

